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The Higgs boson mass may arise from a portal coupling to a singlet field σ which has a very
large VEV f ≫ mHiggs. This requires a sector of “ultra-weak” couplings ζi, where ζi . m2

Higgs/f
2.

Ultra-weak couplings are technically naturally small due to a custodial shift symmetry of σ in
the ζi → 0 limit. The singlet field σ has properties similar to a pseudo-dilaton. We engineer
explicit breaking of scale invariance in the ultra-weak sector via a Coleman-Weinberg potential,
which requires hierarchies amongst the ultra-weak couplings.
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I. Introduction

The Higgs boson presents several well-known puzzles
associated with the problem of the naturalness of the ex-
istence of a low mass fundamental 0+ field in quantum
field theory. The naturalness issue is associated with how
scale symmetry is implemented (or not) for the Higgs bo-
son, and there has been a recent upsurge of interest in
models that attempt to maintain a classical scale invari-
ance which is broken only by scale anomalies [1–4]. Here
we explore this idea in the context of an extension of the
Standard Model (SM) that includes a new gauge singlet
scalar field σ coupled to the Higgs sector via ultra-weak
couplings. In particular, we assume that the Higgs cou-
ples to the singlet field σ through a portal interaction
ζ1σ

2H†H . Electroweak breaking is induced when σ ac-
quires a VEV by quantum loops, i.e., through Coleman-
Weinberg (CW) symmetry breaking [5], and thus yields
a mass for σ and for the Higgs boson. We consider the
case that the σ field VEV f is much larger than the weak
scale, f ≫ vweak, in which case the coupling ζ1 must be
ultra-weak, |ζ1| = m2

H/f
2 ≪ 1.

At first sight, constructing a model with ultra-weak
scalar couplings would seem to be a foolish thing to
do since most SM couplings are either technically nat-
urally small (e.g., the electron or up and down quark
Higgs-Yukawa couplings) or are of order the gauge cou-
plings, such as gtop ∼ g3. For example, the Higgs quartic
coupling λ receives additive contributions from the large
O(1) couplings gtop, g2 and g1, and thus λ is not ultra-
weak.

Therefore we must ask if ζ1 can be technically natu-
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rally small. The answer is yes: there exists a custodial

symmetry for ultra-weak couplings amongst singlet fields.
This is a “shift symmetry” and it has a Noether current
whose divergence is small, ∝ ζi. This is the reason why
ultra-weak couplings can remain ultra-weak in the renor-
malization group (RG) evolution; the ’t Hooft natural-
ness of ultra-weak couplings is the exact shift symmetry
in the limit ζi → 0. We have seen shift symmetry in an-
other guise before. Shift symmetry naturally casts σ as
a pseudo-dilaton (see Appendix).

As discussed in a companion paper [6], one motivation
for such small couplings arises in the context of the DFSZ
axion solution to the strong CP problem where f is iden-
tified with the axion decay constant [7]. Alternatively,
it may be that σ is the dilation responsible for generat-
ing the Planck scale, or f may be associated with a high
energy scale such as Grand Unification. In this paper,
we wish to demonstrate, in the context of a very sim-
ple model, how such small couplings are natural and to
briefly explore the new phenomenology associated with
ultra-weak couplings.

II. Origin of Higgs boson mass from an ultra-weak

sector

Consider an extension of the SM in which the Higgs
boson sector includes a real singlet scalar field σ. We
assume that the theory has a classical scale symmetry1

1 The idea of classical scale symmetry as a custodial symmetry of
a fundamental perturbative Higgs boson has been emphasized by
Bardeen [1] who argues that the additive quadratic divergences
associated, for example, with the top quark loop correction, are
an artifact of using a calculational method that violates classical
scale invariance. We will return to a discussion of this below.

FERMILAB-PUB-14-086-T

http://arxiv.org/abs/1404.6268v1
mailto:hill@fnal.gov


2

so that only dimension four terms are allowed, giving the
most general action of the form

S =

∫

d4x

(

1

2
∂µσ∂

µσ + (DµH)†DµH − V (H,σ)

)

,

(1)
where

V (H,σ) =
λ

2
(H†H)2 +

ζ1
2
σ2H†H +

ζ2
4
σ4. (2)

CW symmetry breaking is analogous to a QCD-like
mechanism in that it arises entirely from a stress-tensor
trace anomaly, i.e., it relies upon scale symmetry break-
ing by perturbative quantum loops. The scale invariance
of the action is again recovered in the limit ~ → 0 as
quantum loops are turned off and the trace anomaly goes
to zero.
The RG equations for eq.(2) are

βλ =
dλ(µ)

d ln(µ)
=

1

16π2

(

12λ2 − 3λ(3g22 + g21)

+
3

4
(g21 + g22)

2 +
3

2
g42 + 12λg2t − 12g4t + ζ21

)

, (3)

β1 =
dζ1(µ)

d ln(µ)
=

1

16π2

(

6ζ1ζ2 + 6ζ1λ+ 4ζ21

−3

2
ζ1(3g

2
2 + g21) + 6ζ1g

2
t

)

, (4)

β2 =
dζ2(µ)

d ln(µ)
=

1

16π2

(

18ζ22 + 2ζ21
)

. (5)

An immediately obvious feature is that, due to the cus-
todial shift symmetry of σ, the ζi couplings, as a class,
are multiplicatively renormalized. Therefore if these cou-
plings are very small they will remain small over a large
range of RG running, i.e., an “ultra-weak sector” can be
technically natural in the SM.
Let us neglect the contribution of the Higgs field to the

potential momentarily. The σ field, despite having ultra-
weak couplings, can have a nontrivial CW potential with
a minimum at some high energy scale f [5]. This requires
that: (1) the quartic coupling ζ2 is negative for any scale
µ ≤ f , (2) β2 is positive, and (3) ζ2(f

′) = 0 at some scale
f ′ >∼ f so that ζ2 crosses from negative to positive values
with increasing ln(µ) [4]. The solution to eq.(5) is, to a
good approximation, ζ2(µ) ≈ β2 ln(µ/f

′) with constant
β2 > 0. This solution satisfies conditions (1) through (3),
which can be consistent with the overall quartic stability
of the potential.
Using the approximate solution for ζ2(µ) with the VEV

of σ itself as the scale µ, the effective potential VCW (σ)
for the field σ is

VCW (σ) ≈ 1

4
β2σ

4 ln

(

σ

f ′

)

. (6)

The minimum occurs at 〈σ〉 ≡ f = f ′e−1/4. We also see
that

β2(f) = −4ζ2(f), (7)

which is the key “extremal relationship” at the minimum
of the CW potential [4]. Note that the extremal condi-
tion eq.(7) says that we are equating a one-loop O(~)
expression, β2, to a tree-level (classical) coupling, ζ2 [5].
The consistency of this result with perturbation theory
requires that the ζ21 term in β2 be the dominant one, so

β2(f) ≈
ζ21 (f)

8π2
, hence

β2(f)

4|ζ2(f)|
≈ ζ21 (f)

32π2|ζ2(f)|
= 1.

(8)

Thus the consistency of the CW potential minimum re-
quires a substantial hierarchy |ζ2| ≪ |ζ1| ≪ 1 amongst
the ultra-weak couplings.
For our present problem, however, we have a mixed

potential involving the Higgs and σ fields,

V (σ,H) ≈ 1

4
β2σ

4 ln

(

σ

f ′

)

+
λ

2
(H†H)2+

ζ1
2
σ2H†H. (9)

The minimization procedure can be simplified by writing
this as a sum of two independent potentials,

V (σ,H) ≈ 1

4
β2σ

4 ln

(

σ

f̃

)

+
λ

2

(

H†H − ǫσ2
)2
, (10)

where

ǫ =
|ζ1|
2λ

, f ′ = f̃ exp

(

− ζ21
2λβ2

)

, (11)

and ζ1 is negative.
Note that we have not chosen a new RG trajectory

parametrized by f̃ . Instead, the CW potential appear-
ing in eq.(10) involves f̃ which is related to our original
choice of trajectory (parametrized by f ′) through the re-
lationship

β2 ln(f
′) = β2 ln(f̃)− 2λǫ2. (12)

The zero-crossing of the original ζ2(µ) = β2 ln(µ/f
′) re-

mains at f ′. However, what now matters for the mini-
mization of eq.(10) is the running of an effective shifted

coupling constant ζ′2(µ) = β2 ln(µ/f̃) = ζ2(µ)−2λǫ2. Us-
ing eqs.(8,11), ζ′2(µ) will have a zero-crossing at a much

higher energy scale f̃ = f ′ exp(4π2/λ), but it can readily

satisfy the extremal condition eq.(7) at f̃ .
The minimum of eq.(10) now occurs at

〈σ〉 ≡ f = f̃ e−1/4, (13)

(〈H〉)2 ≡ v2 = ǫf2, hence ǫ =
v2

f2
. (14)

The mass eigenstates are computed by expanding the
fields about the minimum, σ = f + σ̂ and H = v+ h/

√
2

(H can be treated like a complex singlet at this point
by going to unitary gauge). The quadratic terms in the
potential, V (σ̂, h)2, are then

V (σ̂, h)2 =
1

2

(

β2f
2 + 4λ

v4

f2

)

σ̂2 + λv2h2 − 2
√
2λv3

f
hσ̂

=
1

2

(

β2 + 4λǫ2
)

f2σ̂2 + λǫf2h2 − 2
√
2λǫ3/2f2hσ̂.

(15)
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Denoting the physical mass eigenstates as h̃ and σ̃, we
find

h = h̃+

√
2vσ̃

f
, σ = σ̃ −

√
2vh̃

f
. (16)

To leading order in ǫ, the eigenfields are diagonal with
masses

m2
h = 2λv2 = 2λǫf2 ↔ h̃, (17)

m2
σ = β2f

2 ↔ σ̃. (18)

Our model is predictive in terms of ǫ = v2/f2 given that,
from eqs.(8,11), we have

β2 =
ζ21
8π2

=
λ2ǫ2

2π2
, therefore m2

σ =
m4

h

8π2f2
. (19)

For mh = 126 GeV, eq.(19) gives

mσ ≈ 0.179

(

1010 GeV

f

)

keV. (20)

The model therefore predicts a low mass 0+ particle for
f >∼ 1010 GeV.
The field σ̃ is effectively a dilaton and couples to every-

thing the Higgs does with the replacement of the Higgs
VEV

v → v +

√
2v

f
σ̃, hence

δv2

v
=

2
√
2

f
σ̃. (21)

For example, σ̃ couples to the electron as

L′ = −
√
2meσ̃

f
ψψ. (22)

Furthermore, this implies that σ̃ will couple to the elec-
tromagnetic field FµνF

µν through vacuum polarization
loops of all the charged particles in the SM. This cou-
pling is determined by the QED β-function and satisfies
the familiar dilaton low energy theorems that apply to a
very low mass Higgs boson [8, 9].
The σ̃ → γγ decay width can by determined by rescal-

ing eq.(1) of ref.[9], giving

Γ(σ̃ → γγ) = C2
σ

α2m3
σ

256π3f2
, (23)

with the coefficient Cσ given by

Cσ =





∑

Q

e2QNcAf (0) +AW (0)



 =
11

3
, (24)

where Af (0) = 4/3, AW (0) = −7, and the sum over
Q extends over all charged fermions in the SM, yielding

∑

Q e
2
QNc = 8.2 Using eq.(20), this leads to a lifetime for

the mass eigenstate σ̃ of

τσ ≈ 1.27× 1023
(

f

1010 GeV

)5

sec. (25)

III. Technical naturalness of the ultra-weak sector

The ultra-weak couplings that have been introduced
are technically natural. In general, suppose we have a
theory with various fields σi, φi with “large” couplings
λi ∼ O(1) and ultra-weak couplings ζi ≪ O(1). The
theory is defined by a classical potential

V (σ, φi, λi, ζi) = V1(φi, λi) + V2(σi, φi, ζi). (26)

Here the full potential decomposes into components V1
and V2 where δ

δσi
V1 = δ

δζi
V1 = 0, and δ

δλi
V2 = 0.

The RG equations for the ζi will then take the form

dζi
d ln(µ)

= βζi =
∑

ζj

ζjF
j
i (ζi, λ), (27)

with polynomial functions F j
i (ζi, λi). The set of cou-

plings {ζi} is multiplicatively renormalized and the ζi can
therefore be technically naturally small.
This multiplicative renormalization of the ζi arises be-

cause the fields σi are associated with approximate shift
symmetries σi → σ + ǫif of the action (see Appendix).
The smallness of the couplings ζi are protected by the
shift, i.e., the ’t Hooft naturalness condition ζi ≪ 1 is
satisfied since, in the limit ζi → 0, we have an enhanced
exact shift symmetry of the action. Small ζi represents
a small breaking of this symmetry.
Given that the scale of gauge couplings in the SM is

O(1), the shift symmetry limit can exist only if the σi
are gauge singlet fields. Indeed, it is not meaningful to
talk about shift symmetries for fields that carry gauge
charges such as the Higgs boson (unless one is interested
in the consequences of dynamics in the limit that gauge
couplings can be ignored). The couplings λi of fields such
as the Higgs boson will receive additive corrections from
gauge couplings and will not be multiplicatively renor-
malized. They will run according to the RG and become
comparable in size to the gauge couplings.
Of course, our argument is subject to gravitational ef-

fects. All fields including σ couple to gravity, which is
a gauge theory, so the condition of ultra-weak ζi cou-
plings is subject to whether or not the shift symmetry

2 Here the low energy theorem is almost exact, in contrast to the
Higgs case for which the sum includes only the top quark and W
loops and the functions Af (τf ) and AW (τW ) in eq.(2) of ref.[9]
are evaluated at nonzero τi ∝ m2

h
/v2.
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can be maintained in the context of gravity. This can be
done if the contributions to the RG equations from con-
formal couplings ξi, which appear in terms like 1

2
ξσ2R,

can remain ultra-weak. These, in turn, will involve effec-
tive gravitational couplings, an example of which is the
recent “Agravity” model of Salvio and Strumia [10]. It
does appear possible to maintain the ultra-weak limit of
the ζi within the context of this scheme, and if the grav-
itational corrections are responsible for generating the ζi
then a simple explanation for the hierarchy between ζ2
and ζ1 may be possible. If instanton effects are relevant
and yield additive corrections to the ζi, we expect these
to be suppressed as exp(−8π2/ζi).

Hence, the shift symmetry may be a powerful con-
straint that admits a natural sector of ultra-weakly cou-
pled physics.

IV. Classical scale invariance

Up to now we have assumed that the theory obeys clas-
sical scale invariance in the sense that scale invariance is
broken only through the trace anomaly. This assumes, as
is the case in dimensional regularization, that the radia-
tive corrections to scalar masses that are quadratically
dependent on the cut-off scale are cancelled by the bare
mass terms, leaving the scalars massless before sponta-
neous symmetry breaking. This makes sense in a pure
field theory because only the renormalized masses are
physical. However, new physics at a high scale can spoil
this by introducing contributions to the scalar masses
that are proportional to the high scale. This is the case
if there is a stage of Grand Unification, for which the
contributions are proportional to the mass scale of the
heavy GUT states, but can also happen even if there are
no massive states, for example when the new scale is gen-
erated by the CW mechanism. In the model presented
here, such corrections would affect the Higgs mass and
give rise to the usual hierarchy problem, but they also
affect the singlet state, despite its ultra-weak couplings,
because a contribution to the σ mass squared of O(ζiΛ

2)
will dominate over the CW potential for Λ > O(TeV).
To avoid this we envisage two possibilities.

The first is that there are no high scales of the type dis-
cussed above. Of course this cannot be true if gravity is
included, but, as discussed above, it may be that gravity
respects the shift symmetry and the gravitational correc-
tions to the dilaton mass are small. However, one would
still expect an unacceptably large contribution to the
Higgs mass, thereby reintroducing the hierarchy prob-
lem. Alternatively, if the model is UV complete so that it
does not have Landau poles, gravity may not contribute
to the scalar masses at all [11]. This case is analogous to
that of a pure field theory with classical scale invariance
and guarantees that the scalar sector remains massless in
the absence of spontaneous symmetry breaking.

The second possibility is to super-symmetrize the
model so that the quadratic mass terms have a low
SUSY scale cut-off. In this case, one can have a stage

of Grand Unification without introducing unacceptably
large scalar mass contributions. A supersymmetric ver-
sion of the model requires an additional Higgs doublet
that somewhat complicates the model. We will discuss
this possibility in detail in a partner paper that considers
the mechanism in the context of axion solutions to the
strong CP problem.

V. Conclusions

We have considered the possibility that the Higgs bo-
son mass arises from an ultra-weak sector that contains
an effective dilaton. The dilaton emerges with a very
small mass and couples (with rescaled couplings) to all
final states accessible to the Higgs boson.
The ultra-weak sector is technically natural and is pro-

tected by a shift symmetry. We believe this symmetry
can be maintained in quantum gravity.
In a parallel work [6], we will incorporate the axion,

which fits naturally into an ultra-weak complex singlet
field generalization of this idea. We will discuss further
cosmological and phenomenological implications therein.
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Appendix: Shift Current and the Dilaton

The field σ with ultra-weak couplings is formally anal-
ogous to a dilaton, as occurs in a spontaneous breaking
of scale symmetry. Let us examine this relationship.
Spontaneous scale symmetry breaking can be viewed

in two ways. The conventional description is to start with
a scale invariant theory, containing a dilaton with a shift-
invariant potential, and matter fields. The dilaton’s shift
symmetry is broken by the coupling to matter, e.g., as
in Yukawa couplings. The stress-tensor is traceless. The
dilaton can then acquire a nonzero VEV, and the matter
fields then acquire mass, but the stress tensor remains
traceless. Hence, we end up with a scale invariant theory,
massive matter, and a massless dilaton as the Nambu-
Goldstone boson.
Alternatively, we can start with massive matter fields,

and we include a dilaton with a shift-invariant poten-
tial, but with couplings to matter that again break the
shift symmetry. Now we compute the stress tensor and



5

find that it is not traceless, i.e., the scale current is not
conserved. However, we can find a linear combination
of the scale current and the dilaton shift current that is
conserved; the theory has a hidden symmetry after all.
To see this latter mode, consider an interacting mass-

less scalar field and a massive fermion,

S =

∫

d4x

(

ψi∂/ ψ +
1

2
∂µσ∂

µσ − V (σ, ψ) + LI

)

,

(A.1)
where

V (σ, ψ) = mψψ + gσψψ. (A.2)

LI = (−1/6)∂2σ2 is an “improvement term” and does
not affect the equations of motion. The usual dif-
feomorphism δxµ = ξµ(x), holding the metric fixed,
then yields the “improved stress tensor” [12] as δS =
(1/2)(∂{µξν})T

µν (see Appendix A of [4]):

Tµν =
2

3
∂µσ∂νσ − 1

6
ηµν∂ρσ∂

ρσ − 1

3
σ∂µ∂υσ

+
1

3
ηµνσ∂

2σ +
i

2
ψγ{µ∂ν}ψ + ηµν(V (σ)− iψ∂/ ψ).

(A.3)

The last term can be dropped since it vanishes by the
fermion equation of motion.
The scale current is derived by δxµ = ǫ(x)xµ, yielding

Sµ = δS/δ∂µǫ = xνTµν . The divergence of Sµ is the
trace of eq.(A.3),

∂µS
µ = T µ

µ = mψψ, (A.4)

where equations of motion i∂/ ψ = mψ + gσψ and ∂2σ =
−gψψ are used. Therefore, we see that the scale symme-
try is apparently broken by the fermion mass.
However, there is a “shift current” for the field σ de-

fined by the “shift transformation” δσ = ǫf , where f

is some arbitrary mass scale. The shift transformation
implies a Noether current JS

µ = f∂µσ. The JS
0 ∝ σ̇

component is the canonical momentum of σ, which in-
duces operator shifts in the value of the field through
the equal time commutation relations, much like a mo-
mentum operator i∂µ induces shifts in position in ordi-
nary quantum mechanics. The conservation law of JF

µ

is, of course, equivalent to the equation of motion of σ,
∂µJF

µ = −f δ
δσV (σ), where V is a potential that depends

nonderivatively upon σ and other fields.
In the case of eq.(1), the shift symmetry is broken by

the Yukawa coupling since

∂µJ
µ
S = f∂2σ = −gfψψ. (A.5)

However, we see that with the special choice gf = m we
have a conserved current Qµ = Sµ + Jµ

S , the sum of the
shift current and the scale current

∂µQ̂
µ = (m− gf)ψψ → 0

∣

∣

gf=m
(A.6)

The theory therefore has a hidden symmetry.
Note that we could obtain a conserved scale current

Ŝµ by modifying the stress tensor to

T̂ µν = T µν − 1

3
∂{µJ

S
ν} +

1

3
ηµν∂ρJ

ρ
S . (A.7)

The modified stress tensor implies a modified scale cur-
rent Ŝµ = xν T̂µν that has the trace

∂µŜ
µ = T̂ µ

µ = (m− gf)ψψ → 0
∣

∣

gf=m
. (A.8)

The modified stress tensor is precisely what we would
have obtained directly from the scale invariant theory,
i.e., eq.(A.1, A.2) withm = 0, and shifting σ to a nonzero
VEV σ → σ + f . The shift current is playing a hidden
role, buried in the stress tensor, yielding the conserved
scale current.
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